Kamis, 21 November 2013

Gravimetri dalam ilmu kimia merupakan salah satu metode kimia analitik untuk menentukan kuantitas suatu zat atau komponen yang telah diketahui dengan cara mengukur berat komponen dalam keadaan murni setelah melalui proses pemisahan. Analisis gravimetri melibatkan proses isolasi dan pengukuran berat suatu unsur atau senyawa tertentu. Metode gravimetri memakan waktu yang cukup lama, adanya pengotor pada konstituen dapat diuji dan bila perlu faktor-faktor koreksi dapat digunakan.

Berat unsur dapat dihitung berdasarkan rumus senyawa dan berat atom unsur – unsur atau senyawa yang dikandung dilakukan dengan berbagai cara, seperti : metode pengendapan; metode penguapan; metode elektroanalisis; atau berbagai macam cara lainya. Pada prakteknya 2 metode pertama adalah yang terpenting, metode gravimetri memakan waktu yang cukup lama, adanya pengotor pada konstituen dapat diuji dan bila perlu faktor – faktor pengoreksi dapat digunakan (Khopkar,1999).
Gravimetri adalah pemeriksaan jumlah zat dengan cara penimbangan hasil reaksi pengendapan. Gravimetri merupakan pemeriksaan jumlah zat yang paling tua dan paling sederhana dibandingkan dengan cara pemeriksaan kimia lainnya. Kesederhaan itu kelihatan karena dalam gravimetri jumlah zat ditentukan dengan cara menimbang langsung massa zat yang dipisahkan dari zat-zat lain (Rivai,1994).
Pada dasarnya pemisahan zat dengan gravimetri dilakukan dengan cara sebagai berikut. Mula-mula cuplikan dilarutkan dalam pelarutnya yang sesuai, lalu ditambahkan zat pengendap yang sesuai. Endapan yang terbentuk disaring, dicuci, dikeringkan atau dipijarkan, dan setelah itu ditimbang. Kemudian jumlah zat yang ditentukan dihitung dari faktor stoikiometrinya. Hasilnya disajikan sebagai persentase bobot zat dalam cuplikan semua (Rivai,1994).
Suatu metode analisis gravimetri biasanya didasarkan pada reaksi kimia seperti
aA + R → AaRr
dimana a molekul analit, A, bereaksi dengan r molekul reagennya R. Produknya, yakni AaRr, biasanya merupakan suatu substansi yang sedikit larut yang bias ditimbang setelah pengeringan, atau yang bisa dibakar menjadi senyawa lain yang komposisinya diketahui, untuk kemudian ditimbang. Sebagai contoh, kalsium biasa ditetapkan secara gravimetri melalui pengendapan kalsium oksalat dan pembakaran oksalat tersebut menjadi kalsium oksida, dengan reaksi:
Ca2 + CaO42- → CaC2O4(S)
CaC2O4 → CaO(S) + CO2 (g) + CO(g)
Pemisahan unsur atau senyawa dari senyawa atau larutan dapat dilakukan dengan menggunakan beberapa cara atau metode analisa gravimetri. Beberapa metode analisa gravimetri sebagai berikut :
Metode pengendapan
Pelarut yang dipilih harus lah sesuai sifatnya dengan sampel yang akan di larutkan,
Misalnya : HCl, H2SO4, dan HNO3 digunakan untuk melarutkan sampel dari logam – logam.
Metode peguapan atau pembebasan ( gas )
Metode elektroanalisis
Metode ekstraksi dan kromatogravi
Pada percobaan yang dilakukan praktikan menggunakan cara pengendapan.

2.2GRAVIMETRI PENGENDAPAN
Gravimetri pengndapan adalah merupakan gravimetri yang mana komponen yang hendak didinginkan diubah menjadi bentuk yang sukar larut atau mengendap dengan sempurna.
Bahan yang akan ditentukan di endapkan dalam suatu larutan dalam bentuk yang sangat sedikit larut agar tidak ada kehilangan yang berarti bila endapan disaring dan ditimbang.
Syarat – syarat senyawa yang di timbang :
Stokiometri
Mempunyai kestabilan yang tinggi
Faktor gravimetrinya kecil
Adapun beberapa tahap dalam analisa gravimetri adalah sebagai berikut :
1.Memilih pelarut sampel
Pelarut yang dipilih harus lah sesuai sifatnya dengan sampel yang akan di larutkan,
Misalnya : HCl, H2SO4, dan HNO3 digunakan untuk melarutkan sampel dari logam – logam.
2.Pengendapan analit
Pengendapan analit dilakukan dengan memisahkan analit dari larutan yang mengandungnya dengan membuat kelarutan analit semakin kecil, dan pengendapan ini dilakukan dengan sempurna.
Misalnya : Ca+2 + H2C2O4 => CaC2O4 (endapan putih)
3.Pengeringan endapan
Pengeringan yang dilakukan dengan panas yang disesuaikan dengan analitnya dan dilakukan dengan sempurna. Disini kita menentukan apakah analit dibuat dalam bentu oksida atau biasa pada karbon dinamakan pengabuan.
4.Menimbang endapan
Zat yang ditimbang haruslah memiliki rumus molekul yang jelas
Biasanya reagen R ditambahkan secara berlebih untuk menekan kelarutan endapan (Day and Underwood, 2002).
Dalam menentukan keberhasilan metode gravimetri ada beberapa persyaratan yang harus dipenuhi, yaitu :
1.Proses pemisahan hendaknya cukup sempurna sehingga kuantitas analit yang tak terendapkan secara analitis tak dapat dideteksi (biasanya 0,1 mg atau kurang dalam menentukan penyusunan utama dalam suatu makro)
2.Zat yang ditimbang hendaknya mempunyai susunan yang pasti dan hendaknya murni, atau sangat hampir murni. Bila tidak akan diperoleh hasil yang galat.
Persyaratan yang kedua itu lebih sukar dipenuhi oleh para analis. Galat-galat yang disebabkan faktor-faktor seperti kelarutan endapan umumnya dapat diminimumkan dan jarang menimbulkan galat yang signifikan. Masalahnya mendapatkan endapan murni dan dapat disaring itulah yang menjadi problema utama. Banyak penelitian telah dilakukan mengenai pembentukkan dan sifat-sifat endapan, dan diperoleh cukup banyak pengetahuan yang memungkinkan analis meminimumkan masalah kontaminasi endapan (Day and Underwood, 2002).
Dalam analisa gravimetri penentuan jumlah zat didasarkan pada penimbangan hasil reaksi setelah bahan yang dianalisa direaksikan. Hasil reaksi ini didapatkan sisa bahan suatu gas yang dibentuk dari bahan yang dianalisa. Dalam cara pengendapan, zat direaksikan dengan menjadi endapan dan ditimbang. Atas dasar membentuk endapan, maka gravimetrik dibedakan menjadi 2 macam, yaitu : endapan dibentuk dengan reaksi antara zat dengan suatu pereaksi dan endapan yang dibentuk dengan elektrokimia. Untuk memisahkan endapan dari larutan induk dan cairan pencuci, endapan dapat disaring. Endapan grevimetri yang disaring kertas tidak dapat dipisahkan kembali secara kuantitatif.
Sudah dijelaskan bahwa dalam analisa gravimetri, penentuan jumlah zat didasarkan pada penimbangan. Dalah hal ini, penimbangan hasil reaksi setelah bahan yang dianalisa direaksikan. Hasil reaksi ini dapat berupa sisa bahan atau suatu gas yang terjadi, atau suatu endapan yang dibentuk dari bahan yang dianalisa tersebut. Berdasarkan macam hasil yang ditimbang itu dibedakan cara-cara gravimetri yaitu cara evolusi dan cara pengendapannya (Hardjadi, 1993).
Endapan murni adalah endapan yang bersih, artinya tidak mengandung molekul-molekul lain (zat-zat lain yang biasanya disebut pengotor atau kontaminan). Pengotor oleh zat-zat lain mudah terjadi, karena endapan timbul dari larutan yang berisi macam-macam zat. Sedangkan endapan kasar adalah endapan yang butir- butirnya tidak kecil, halus melainkan besar. Hal penting untuk kelancaran penyaringan dan pencucian endapan. Adapun tujuan dari pencucian endapan adalah untuk menyingkirkan kotoran yang teradsorpsi pada permukaan endapan maupun yang terbawa secara mekanis (Harjadi, 1993).
Gravimetri dengan cara pengendapan, analat direaksikan sehingga terjadi suatu pengendapan dan endapan itulah yang ditimbang. Atas dasar cara membentuk endapan, maka gravimetri dibedakan menjadi 2 macam :
(1) Endapan dibentuk dengan reaksi antara analat dengan sutau pereaksi, endapan biasanya berupa senyawa. Baik kation maupun anion dari analat mungkin diendapkan, bahan pengendapnya anorganik mungkin pula organik. Cara inilah yang biasa disebut dengan gravimetri.
(2) Endapan dibentuk dengan cara elektrokimia, dengan perkataan lain analat dielektrolisa, sehingga terjadi logam sebagai endapan. Cara ini biasa disebut dengan elektrogravimetri.
Salah satu masalah yang paling sulit dihadapi oleh para analis adalah menggunakan endapan sebagai cara pemisahan dan penentuan gravimetrik adalah memperoleh endapan tersebut dengan tingkat kemurnian yang tinggi. Zat-zat yang normalnya mudah larut dapat diturunkan selama pengendapan zat yang diinginkan dengan suatu proses yang disebut kopresipitasi. Misalnya, bila asam sulfat ditambahkan pada barium klorida yang mengandung sejumlah kecil ion nitrat, endapan barium sulfat yang diperoleh mengandung barium nitrat. Maka dikatakan bahwa nitrat tersebut terkorosipitasi dengan sulfat (Day and Underwood, 2002).
Kontresipitasi merupakan suatu fenomena yang ahli-ahli kimia analitik biasanya coba hindari. Namun, fakta bahwa endapan cenderung mengabsorpsi zat-zat asing tidak selalu mengganggu; kopresipitasi telah digunakan secara luas untuk mengisolasi runut isotop-isotop radio aktif. Ketika isotop-isotop ini dibentuk dalam reaksi uklir. Jumlah yang terbentuk bisa sangat kecil, dan prosedur pengendapan umumnya gagal pada konsentrasi yang sangat kecil. Untuk meminimalisirkan kopresipitasi dapat digunakan beberapa prosedur dibawah ini, yaitu :
1. Metode penambahan pada kedua reagen, jika diketahi bahwa baik sampel maupun enapan mengandung suatu ion yang mengotori, larutan yang megandung ion tersebut dapat ditambahkan pelarut lain, dengan cara ini konsentrasi pencemaran dijaga serendah mungkin selama tahap awal-awal pengendapan
2. Pencucian
3. Pencernaan
4. Pengendapan kembali
Suatu endapan kristalin, seperti BaSO4, kadang-kadang mengabsorpsi pengotor (impurities) bila partikel-partikelnya kecil. Dengan bertumbuhnya ukuran partikel, pengotor tersebut bisa tertutup dalam kristal. Kontaminasi jenis ini disebut dengan pengepungan (acclusian). Untuk membedakan dari kasus dimana padatan tidak tumbuh di sekitar pengotor. Pengotor yang terkepung tidak dapat dipindahkan dengan mencuci endapan tersebut, tetapi mutu endapan tersebut seringkali dapat disempurnakan dengan pencernaan (Day and Underwood, 2002).
Dalam hal ini penimbangan hasil reaksi setelah bahan yang direaksikan dianalisa. Hasil reaksi ini dapat : sisa bahan, atau suatu gas yang terjadi, atau suatu endapan yang terbentuk dari bahan yang diananlisa itu. Berdasarkan macam hasil yang ditimbang itu dibedakan cara-cara gravimetri; cara evolusi dan cara pengendapan (Harjadi, 1993).
Banyak sekali reaksi yang digunakan dalam analisis kualitatif melibatkan endapan. Endapan adalah zat yang memisahkan diri sebagai suatu fase padat keluar dari larutan. Endapan mungkin berupa kristalin atau koloid, dan dapat dilakukan dengan penyaringan atau pemusingan (centrifuge). Endapan terbentuk jika larutan menjadi terlalu jenuh dengan zat yang bersangkutan. Kelarutan (s) suatu endapan, menurut definisi adalah sama dengan konsentrasi molar larutan jenuhnya. Kelarutan suatu zat tergantung pada berbagai kondisi, seperti suhu, tekanan, konsentrasi bahan- bahan lain dalam larutan itu, dan komposisi pelarutnya (Svehla, 1990).
Dalam prosedur gravimetrik yang lazim suatu endapan ditimbang dan darinya nilai analit dalam sampel dihitung. Maka persentase analit A adalah:
%A = Bobot A x 100 %
Bobot sample
atau, jika kita tentukan faktor gravimetrik endapan, yaitu:
fg = BA atom A x 100 %
BM endapan
Maka, persentase analitnya:
%A = Berat endapan x faktor gravimetri (fg) x 100%
berat sampel
Dalam cara evolusi bahan direaksikan sehingga timbul suatu gas; caranya dapat dengan memanaskan bahan tersebut, atau mereaksikan dengan suatu pereaksi. Pada umumnya yang dicari ialah banyaknya gas yang terjadi. Cara mencari jumlah gas tersebut adalh sebagai berikut :
1. Tidak langsung
Dalam hal ini analatlah yang ditinbang setelah bereaksi; berat gas diperoleh sebagai selisih berat analat sebelum dan sesudah reaksi.
2. Langsung
Gas yang terjadi ditimbang setelah diserap oleh suatu bahan yang khusus untuk gas yang bersangkutan. Sebenarnya yang ditimbang ialah bahan penyerap itu yaitu sebelum dan sesudah penyerapan sedangkan berat gas diperoleh dari selisih kedua penimbangan (Harjadi, 1993).
Dalam cara pengendapan, analat sekarang direaksikan sehingga terjadi suatu endapan dan endapan itulah yang ditimbang. Atas dasar cara membentuk endapan, maka gravimetric dibedakan menjadi dua macam:
1. Endapan dibentuk dengan reaksi antara analat dengan suatu pereaksi endapan biasanya berupa senyawa. Baik anion dan kation dari analat mungkin diendapkan. Bahan pengendapnya mungkin organik atau anorganik.
2. Endapan dibentuk secara elektrokimia, dengan perkatan lain analat dielektrolisa, sehingga terjadi logam sebgai endapan. Cara ini disebut dengan elektrogravimetri (Harjadi, 1993).

2.3 ZAT PENGENDAP ORGANIK
Reagensia organik merupaka bahan untuk membantu proses pemisahan satu atau lebih ion anorganik dari campuran, yang mana ion – ion ini biasanya mengghasilkan senyawaan yang angat sedikit dapat larut dan sering kali berwarna. Reagensia organik disebut juga zat pengendap organik. Zat pengendap organik yang digunakan haruslah ideal, artinya pengendap organik tersebut bersifat spesifik, yaitu harus membari endapan dengan hanya satu endapan tertentu.

2.4 DIMETILGLIOKSMAT
Pengendap organik ini ditemukan oleh L. Thusgaeff dan digunakan oleh O. Brunck untuk penetapan nikel dalam baja. Zat ini memberi endapan merah cerah bila direaksikan dengan larutan nikel dengan garamnya. Sedikit berlebih reagensia ini tidak memberi reaksi apa – apa terhadap endapan, tapi ada juga kelebihannya yang harus dihindari, yaitu :
1.Kemungkinan dimetilglioksimat ikut mengendap karena semakin kecil kelarutannya
2. Dapat menyebabkan bertambahnya kelarutan endapan dalam campuran air-etanol
CH3 – C = N – OH
|
CH3 – C = N – OH
Gambar 2.1 Struktur Dimetilglioksima
Dimetilglioksimat hanya sedikit larut dalam air sehingga dipakai sebagai larutan 1 % dalam etanol.


Kromatografi gas



Kromatografi gas digunakan untuk pemisahan campuran yg komponen2nya dapat menguap pada suhu percobaan (sampai 400c) dengan gas sebgai fase gerak n sbg fase diam bisa zat padat atau zat cair. Bila fase diam merupakan zat padat, maka teknik ini dsebut sbggas  ‘gas solid chromatography’ (GSC). Jika zat cair, dsbut gas liquid chromatography (GLC). Kromatografi gas (atau biasa dikenal juga dengan Gas Chromatography/GC) adalah salah satu bagian dari khromatografi yaitu salah satu teknik pemisahan komponen-komponen dalam campuran di antara fase diam (kolom) dan fase gerak (gas). Ruang lingkup aplikasi kromatografi gas adalah sampel sampel yang mudah menguap,mudah diuapkan dan tidak rusak karena panas (thermally-stable).Untuk sampel yang tidak memenuhi syarat tersebut masih memungkinkan untuk dianalisis dengan menggunakan metode kromatografi gas  melalui perlakuan tertentu seperti derivatisasi dan penggunaan teknik tambahan (metode headspace,pyrolizer,dll).Saat ini GC merupakan salah satu instrumen utama dalam aplikasi laboratorium.

Secara umum,konfigurasi kromatografi gas meliputi bagian-bagian sebagai berikut:

1. Gas Pembawa
Gas pembawa (carrier gas) berfungsi sebagai fase gerak. Gas pembawa adalah gas inert yang memiliki kemurnian tinggi (direkomendasikan grade Ultra High Purity atau UHP).Gas pembawa ini yang akan membawa uap sampel masuk ke dalam kolom untuk dipisahkan komponen-komponen dalam campurannya dan selanjutnya akan masuk ke detektor untuk dideteksi secara individual. Gas pembawa yang biasa digunakan adalah Helium,Nitrogen atau Hidrogen. Kecepatan linier carrier gas menentukan efisiensi kolom. Untuk kolom dengan diameter ¼” O.D . biasanya digunakan flow rate 75ml/menit dan untuk kolom 1/8” 25ml/mnit. Flowrate optimum dapat ditentukan dengan persamaan van deemter. (silakan mengacu ke kurva Van Deemter). Syarat :
1.      Iner, untuk mencegah interaksi dengan sampel atau pelarut
2.      Koefisien difusi sampel pada gas tersebut rendah
3.      Murni dan mudah diperoleh
4.      Murah
5.      Cocok untuk detektor yang digunakan
Untuk analisis sampel gas,maka gas pembawa yang digunakan harus berbeda dengan gas target analisis. Gas pembawa biasanya disimpan dalam tabung gas bertekanan tinggi atau dari gas generator.

2. Injektor
Injektor memiliki fungsi untuk memasukkan sampel,menguapkan sampel,dan mencampur uap sampel dengan gas pembawa. Dalam kromatografi gas,semua sampel dari fase asal harus diubah menjadi fase gas/uap.Misalnya sampel padatan dapat dilarutkan terlebih dahulu,baru larutannya diinjeksikan ke sistem kromatografi gas.Untuk sampel larutan bisa langsung diinjeksikan menggunakan microsyringe biasa,sementara untuk sampel gas bisa menggunakan gas-tight syringe.Untuk otomatisasi,bisa juga menggunakan autoinjector/autosampler. Injektor dilengkapi dengan blok pemanas (heater block) yang memungkinkan pengaturan suhu injektor untuk menguapkan sampel.Biasanya yang menjadi patokan awal adalah kira-kira 50 oC di atas titik didih tertinggi dalam campuran,dengan asumsi semua zat target akan menguap tapi tidak sampai merusak komponen itu sendiri. Untuk sampel-sampel yang memerlukan perlakuan khusus bisa menggunakan opsi tambahan,misalnya Pyrolizer (untuk sampel seperti ban,kayu,dll),Headspace (untuk sampel film atau kemasan plastik,cat,dll) atau Programmable Temperature Vaporizer (untuk sampel biodiesel yang memiliki range titik didih lebar).

3. Kolom
Kolom berfungsi sebagai fase diam dan merupakan jantung dari kromatografi.Dalam kolomlah terjadi proses pemisahan komponen-komponen dalam campuran berdasarkan perbedaan afinitas masing-masing komponen terhadap fase diam dan fase gerak. Secara imaginer,masing-masing komponen akan mengalami 3 kondisi:ikut dengan gas pembawa,terdistribusi secara dinamis di antara gas pembawa dan kolom,serta tertahan/larut dalam kolom.Mekanisme ini terjadi berulang-ulang mulai dari sampel masuk ke dalam kolom hingga masuk ke detektor secara individual. Proses pemisahan dalam kolom dipengaruhi oleh banyak faktor seperti sifat kimia-fisika dari sampel maupun material kolom,dimensi kolom(panjang,diameter dan tebal lapisan kolom,kapiler/kemas),laju alir gas pembawa, suhu oven kolom,dll. Secara umum,semakin mirip polaritas komponen sampel dengan fase diam,maka semakin kuat interaksi antara keduanya sehingga komponen akan tertahan lebih lama dalam kolom (waktu retensi makin lama). Semakin panjang kolom,semakin panjang jarak lintasan yang harus dilalui oleh komponen sampel sehingga waktu retensi makin lama.Laju aliran gas pembawa mempengaruhi kecepatan migrasi komponen sampel dalam kolom (semakin cepat laju alir akan mengakibatkan waktu retensi makin cepat pula).Begitu pula dengan variabel suhu oven kolom,makin tinggi suhu oven kolom,makin lemah interaksi antara komponen sampel dengan fase diam,sehingga makin cepat waktu retensi. Semua variabel tersebut dikombinasikan sedemikian rupa sehingga didapatkan kondisi analisis yang menghasilkan pemisahan yang baik namun waktu analisis juga seefektif mungkin.
Kolom merupakan tempat terjadinya proses pemisahan karena di dalamnya terdapat fase diam. Oleh karena itu, kolom merupakan komponen sentral pada GC.
Ada 3 jenis kolom pada GC yaitu kolom kemas (packing column) dan kolom kapiler (capillary column); dan kolom preparative (preparative column). Perbandingan kolom kemas dan kolom kapiler dtunjukkan oleh gambar berikut :

Kolom Kemas                                                Kolom Kapiler
Kolom kemas terbuat dari gelas atau logam yang tahan karat atau dari tembaga dan aluminium. Panjang kolom jenis ini adalah 1–5 meter dengan diameter dalam 1-4 mm. Kolom kapiler sangat banyak dipakai karena kolom kapiler memberikanefisiensi yang tinggi (harga jumlah pelat teori yang sangat besar > 300.000 pelat). Kolom preparatif digunakan untuk menyiapkan sampel yang murni dari adanya senyawa tertentu dalam matriks yang kompleks.

Fase diam yang dipakai pada kolom kapiler dapat bersifat non polar, polar, atau semi polar. Fase diam non polar yang paling banyak digunakan adalah metil polisiloksan (HP-1; DB-1; SE-30; CPSIL-5) dan fenil 5%-metilpolisiloksan 95% (HP-5; DB-5; SE-52; CPSIL-8). Fase diam semi polar adalah seperti fenil 50%-metilpolisiloksan 50% (HP-17; DB-17; CPSIL-19), sementara itu fase diam yang polar adalah seperti polietilen glikol (HP-20M; DB-WAX; CP-WAX; Carbowax-20M) (6).

4. Oven
Faktor suhu sangat berpengaruh secara signifikan dalam pemisahan di khromatografi gas,khususnya suhu kolom.Kolom diletakan dalam sebuah oven yang bisa diatur suhunya sesuai kebutuhan analisis (baik suhu tetap maupun suhu terprogram).Oven yang baik harus bisa memberikan akurasi dan kestabilan suhu yang baik.

5. Detektor
Detektor pada khromatografi gas berfungsi untuk memberikan respon linear atas komponen-komponen sampel yang sudah dipisahkan dalam kolom.Komponen-komponen dalam sampel akan masuk secara individual ke dalam sistem detektor dan akan dideteksi responnya sesuai prinsip masing-masing detektor,arusnya diperkuat,kemudian dikonversi menjadi satuan tegangan listrik (uV atau mV).Masuknya komponen-komponen sampel ke detektor terjadi secara parsial(tidak sekaligus) dan plotingnya akan membentuk kurva distribusi Gauss seperti yang bisa kita lihat sebagai “khromatogram”. Untuk detektor MS (Mass Spectrometer),mekanismenya agak berbeda dengan mekanisme detektor lain. Ada beberapa jenis detektor dalam khromatografi gas,berikut adalah jenis detektor yang dikenal :
a. Flame Ionization Detector (FID),adalah detektor general untuk mengukur komponen-komponen sampel yang memiliki gugus alkil (C-H).Komponen sampel masuk ke FID,kemudian akan dibakar dalam nyala (campuran gas H2 dan udara),komponen akan terionisasi,ion-ion yang dihasilkan akan dikumpulkan oleh ion collector,arus yang dihasilkan akan diperkuat,kemudian akan dikonversi menjadi satuan tegangan.Semakin tinggi konsentrasi komponen,makin banyak pula ion yang dihasilkan sehingga responnya juga makin besar.
b. Thermal Conductivity Detector (TCD) adalah detektor paling general sebab hampir semua komponen memiliki daya hantar panas.TCD bekerja dengan prinsip mengukur daya hantar panas dari masing-masing komponen.Mekanismenya berdasarkan teori “Jembatan Wheatstone” di mana ada dua sel yaitu sel referensi dan sel sampel.Sel referensi hanya dilalui oleh gas pembawa,sementara sel sampel dilalui oleh gas pembawa dan komponen sampel.Perbedaan suhu kedua sel akan mengakibatkan perbedaan respon listrik antara keduanya dan ini akan dihitung sebagai respon komponen sampel.Detektor TCD banyak digunakan untuk analisis gas.
c. Electron Capture Detector (ECD) adalah detektor khusus untuk mendeteksi senyawaan halogen organik.Banyak diaplikasikan untuk analisis senyawaan pestisida.Secara prinsip,komponen sampel akan ditembak dengan sumber radioaktif Nikel,dan jumlah elektron yang hilang dari proses itu dianggap linear dengan konsentrasi senyawaan tersebut.
d. Flame Photometric Detector (FPD) adalah detektor khusus untuk mendeteksi senyawaan sulfur, posfor dan atau timah organik.Prinsipnya adalah pembakaran senyawaan komponen sehingga mengemisikan energi tertentu yang akan dilewatkan ke filter tertentu (filter S,P atau Sn) kemudian akan dideteksi oleh Photomultiflier.Banyak digunakan untuk analisis senyawaan pestisida.
e. Flame Thermionic Detector(FTD) adalah detektor khusus untuk mendeteksi senyawaan nitrogen dan atau posfor organik.Prinsipnya adalah pembakaran senyawaan komponen kemudian direaksikan dengan garam Rubidium dan respon listrik yang dihasilkan akan diperkuat dan dikonversi menjadi satuan tegangan.Banyak digunakan untuk analisis senyawaan pestisida.
f. Mass Spectrometer (MS) adalah detektor khusus yang dapat digunakan baik untuk analisis kualitatif maupun kuantitatif.Prinsip pengukurannya adalah komponen sampel dipecah menjadi bentuk ion fragmennya (baik secara elektronik maupun kimiawi) lalu ion fragmen tersebut dilewatkan ke Mass Analyzer untuk memisahkan ion berdasarkan perbedaan massa/muatan dan selanjutnya diteruskan ke ion detector untuk mendeteksi jumlah ion yang dihasilkan.Spektrum fragmen yang dihasilkan oleh masing-masing komponen akan menunjukkan karakteristik yang khas,dan ini digunakan untuk tujuan identifikasi kualitatif dengan membandingkan dengan database atau library spektrum yang telah ada.
Syarat2 detektor:
1.      sensitif atau mempunyai limit seteksi yg rendah
2.      volumenya kecil sehingga tidak mengencerkan eluet
3.      responyya cepat dan linier untuk daerahkonsentrasi yng lebar dan tidak dipengaruhi oleh suhu ‘flow rate’ idealny respon ini harus sama untuk setiap senyawa dengan konsentrasi yang sama.
4.      stabil untuk jangka waktu yang lama
5.      sederhana, murah, kuat dan aman

6. Pengolah Data
Pengolah data berfungsi sebagai pengatur sistem instrumen dan pengolahan data untuk tujuan analisis kualitatif maupun kuantitatif. Secara umum pengolah data bisa berupa integrator/recorder ataupun berupa software yang beroperasi under-Windows.
  • Cara Pengoperasian Gas Chromatography
Sesudah alat-alat disiapkan, kolom, alat pendeteksi, suhu dan aliran gas pembawa diatur hingga kondisi seperti yang tertera pada masing-masing monografi, suntikkan larutan zat sejumlah yang tertera pada masing-masing monografi atau larutan  pada tempat penyuntikan zat menggunakan alat penyuntik mikro. Pemisahan komponen-komponen dideteksi dan digambarkan dalam kromatografi. Letakkan kurva pada kromatogram dinyakatakn dalam waktu retensi (waktu dari penyuntikan contoh sampai puncak kurva pada kromatogram) atau volume retensi (waktu retensi x kecepatan alir gas pembawa) yang tetap untuk tiap zat pada kondisi yang tetap. Dasar ini digunakan untuk identifikasi. Dari luas daerah puncak urva atau tinggi puncak kurva, komponen zat dapat ditetapkan secara kwantitatif.
  • Cara kalibrasi
Buat satu seri larutan . Setelah itu, suntikan dengan volume sama tiap larutan ke dalam tempat penyuntikan zat. Gambar garis kalibrasi dari kromatogram, dengan berat zat pada sumbu horizontal, dan tinggi puncak kurva atau luas daerah puncak kurva pada sumbu vertical. Buat larutan zat seperti yang tertera pada masing-masing monografi. Dari kromatogram yang diperoleh dengan kondisi yang sama seperti cara memperoleh garis kalibrasi, ukur luas daerah puncak kurva atau tinggi puncak kurva. Hitung jumlah zat menggunakan garis kalibrasi. Dalam cara kerja ini, semua harus dikerjakan dengan kondisi yang betul-betul tetap.

KROMATOGRAM :
Kromatogram (hasil pemisahan zat oleh elusi pada kromatografi kertas berupa bercak yang menunjukan ” letak ” zat. Tiap pada sistem kromatogram tertentu menghasilkan :
Jarak ynag ditempuh oleh zat yang bersangkutan dititik awal
Nilai Rf :
Jarak yang ditempuh oleh elusi dititik awal
Nilai Rf disebut juga faktor Retardasi = Rate of fraction.
Pada sistem kromatografi dan kondisi elusi tertentu, tiap-tiap zat dapat dikenal melalui Nilai Rf nya yang sebagai suatu tetapan kimia fisika.

Fakto-faktor yang mempengaruhi nilai Rf antara lain :
1. Jenis dan mutu kertas, daya jerap, kelembaban.
2. Susunan pelarut, meliputi :
a. Kemurnian pelarut
b. Stabilitas campuran pelarut selama pemakain dan penyimpanan
3. temperatur ruang
4. kelembaban ruang
5. Kejenuhan ruang akan uap pelarut
6. Konsentrasi (banyaknya) zat
7. Jarak bercak awal (tempat penetesan zat) kepermukaan pelarut
8. Adanya zat lain atau pencemaran
Untuk mengurangi pengaruh fakto-faktor yang sukar diatur tersebut maka seringkali ditentukan nilai Rx statu zat A terhadap zat x sebaga pembangding.
Rf zat A
Nilai Rx =
Rf zat X
Nilai Rx diharapkan tetap karena kedua nilai Rf diperoleh pada kondisi kromatografi yang sama.



Mikrobiologi dalam bidang kesehatan



Sekilas, makna praktis dari mikroorganisme disadari tertutama karena kerugian yang ditimbulkannya pada manusia, hewan, dan tumbuh-tumbuhan. Misalnya dalam bidang mikrobiologi kedokteran dan fitopatologi banyak ditemukan mikroorganisme yang pathogen yang menyebabkan penyakit dengan sifat-sifat kehidupannya yang khas. Walaupun di bidang lain mikroorganisme tampil merugikan, tetapi perannya yang menguntungkan jauh lebih menonjol.

A. BAKTERI
Tidak hanya di bidang lingkungan dan pangan, bakteri juga dapat memberikan manfaat dibidang kesehatan. Antibiotik merupakan zat yang dihasilkan oleh mikroorganisme dan mempunyai daya hambat terhadap kegiatan mikroorganisme lain dan senyawa ini banyak digunakan dalam menyembuhkan suatu penyakit.

Contoh Bakteri Yang Berperan Dalam Kesehatan

1. Bakteri yang menghasilkan antibiotic :

a. Streptomyces griseus, menghasilkan antibiotik streptomycin.
b. Streptomyces aureofaciens, menghasilkan antibiotik tetracycline.
c. Streptomyces venezuelae, menghasilkan antibiotik chloramphenicol.
d. Penicillium, menghasilkan antibiotik penisilin.
e. Bacillus polymyxa, menghasilkan antibiotik polymixin.

2. Pada manusia, beberapa jenis bakteri yang sering kali menjadi agen penyebab penyakit adalah Salmonella enterica subspesies I serovar Typhi yang menyebabkan penyakit tifus, Mycobacterium tuberculosis yang menyebabkan penyakit TBC, dan Clostridium tetani yang menyebabkan penyakit tetanus.[53][54] Bakteri patogen juga dapat menyerang hewan ternak, seperti Brucella abortus yang menyebabkan brucellosis pada sapi dan Bacillus anthracis yang menyebabkan antraks.[55] Untuk infeksi pada tanaman yang umum dikenal adalah Xanthomonas oryzae yang menyerang pucuk batang padi dan Erwinia amylovora yang menyebabkan busuk pada buah-buahan.
B. VIRUS
Peranan virus bagi hewan dan makhluk hidup adalah dapat digunakan di dalam usaha - usaha yang berkaitan dengan kesehatan. Virus biasanya digunakan untuk memindahkan materi genetik dari satu bakteri ke dalam bakteri lainnya yang tidak mungkin dilakkan oleh manusia.

Beberapa virus ada yang dapat dimanfaatkan dalam rekombinasi genetika. Melalui terapi gen, gen jahat (penyebab infeksi) yang terdapat dalam virus diubah menjadi gen baik (penyembuh). Baru-baru ini David Sanders, seorang profesor -biologi pada Purdue's School of Science telah menemukan cara pemanfaatan virus dalam dunia kesehatan. Dalam temuannva yang dipublikasikan dalam Jurnal Virology, Edisi 15 Desember ¬2002, David Sanders berhasil menjinakkan cangkang luar virus Ebola sehingga dapat dimanfaatkan sebagai pembawa gen kepada sel yang sakit (paru-paru). Meskipun demikian, kebanyakan virus bersifat merugikan terhadap kehidupan manusia, hewan, dan tumbuhan.


Contoh Virus Yang Berperan Dalam Kesehatan
  1. Penyakit gondong disebabkan oleh paramyxovirus dapat hidup dijaringan otak, selaput otak, pankreas, testis, kelenjar parotid dan radang di hati. Penyakit gondong ditandai dengan pembengkakan di kelenjar parotid pada leher di bawah daun telinga. penularannya terjadi melalui kontak langsung dengan penderita melalui ludah, urin dan muntahan.
  2. Polio disebabkan oleh poliovirus. Serangan poliovirus menyebabkan lumpuh bila virus menginfeksi selaput otak (meninges) dan merusak sel saraf yang berhubungan dengan saraf tepi. Virus ini menyerang anak - anak berusia antara 1 - 5 tahun . virus polio dapat hidup di air selama berbulan - bulan, sehingga dapat menginfeksi melalui air yang diminum. Dalam keadaan beku virus ini dapat ditularkan lewat lingkungan yang buruk, melalui makanan dan minuman. penularan dapat terjadi melalui alat makan bahkan melalui ludah.
C. JAMUR
JAMUR telah digunakan selama ribuan tahun, baik sebagai makanan maupun obat herbal. Studi-studi menunjukkan bahwa jamur bisa meningkatkan produksi dan aktivitas sel-sel darah putih. Dan hal ini, menurut direktur Institute of Herbal Medicine Douglas Schar, sangat baik untuk melawan infeksi. Jamur adalah salah satu makanan yang enak, selain itu gizi yang ada di dalamnya sangat kompleks. Manfaatnya juga kompleks, mulai dari memerangi kanker, meningkatkan imunitas hingga menguatkan jantung. kalori yang terkandung di dalamnya juga rendah dan jika diolah dengan benar, rasa jamur sangat mirip dengan daging ayam.

Contoh Jamur Yang Berperan Dalam Kesehatan
  1. Jamur Kuping Hitam kering /Auricularia polytricha. jamur kuping berkhasiat membantu melancarkan peredaran darah dalam tubuh. Mengurangi penyumbatan pada pembuluh darah , dan bagus sebagai anti oksidant penangkal Radikal bebas , pencegah timbulnya kanker
  2. Cegah kanker payudara. Jamur kancing mengandung komponen yang berfungsi menghambat aktivitas aromatase (enzim yang terlibat dalam produksi estrogen) dan 5-alpha-reductase (enzim yang berfungsi mengubah testosteron menjadi DHT). Temuan terbaru menunjukkan bahwa jamur kancing bisa mengurangi risiko kanker payudara dan kanker prostat. Ekstrak jamur kancing mengurangi perbanyakan sel dan memperkecil ukuran tumor. Efek kemoterapi ini bisa dilihat dengan asupan sekitar 100 gram jamur per hari.
1) Khamir
Khamir (yeast) adalah salah satu mikroorganisme yang termasuk dalam golongan fungi yang dibedakan bentuknya dari mould (kapang) karena berbentuk uniseluler. Reproduksi vegetatif pada khamir terutama dengan cara pertunasan. Sebagai sel tunggal yeast tumbuh dan berkembang biak lebih cepat dibanding dengan mould yang tumbuh dengan pembentukan filamen. Yeast sangat mudah dibedakan dengan mikroorganisme yang lain misalnya dengan bakteri, yeast mempunyai ukuran sel yang lebih besar dan morfologi yang berbeda. Sedangkan dengan protozoa, yeast mempunyai dinding sel yang lebih kuat serta tidak melakukan fotosintesis bila dibandingkan dengan ganggang atau algae. Dibandingkan dengan kapang dalam pemecahan bahan komponen kimia yeast lebih efektif memecahnya dan lebih luas permukaan serta volume hasilnya lebih banyak.

Contoh Khamir Yang Berperan Dalam Kesehatan
  1. Pneumonia carinii menyebabkan penyakit pneumonia pada paru-paru manusia.
  2. Candida sp. penyebab keputihan dan sariawan pada manusia.
2) Kapang
Kapang adalah mikroorganisme yang termasuk dalam anggota Kingdom Fungi yang membentuk hifa. Kapang bukan merupakan kelompok taksonomi yang resmi, sehingga anggota-anggota dari kapang tersebar ke dalam filum Glomeromycota, Ascomycota, dan Basidiomycota.

Kapang (Inggris: mold) merupakan anggota regnum Fungi ("Kerajaan" Jamur) yang biasanya tumbuh pada permukaan makanan yang sudah basi atau terlalu lama tidak diolah. Sebagian besar kapang merupakan anggota dari kelas Ascomycetes.
Kapang bereproduksi dengan menggunakan spora. Spora kapang terdiri dari dua jenis, yaitu spora seksual dan spora aseksual. Spora aseksual dihasilkan lebih cepat dan dalam jumlah yang lebih banyak dibandingkan spora seksual. Spora aseksual memiliki ukuran yang kecil (diameter 1-10 μm) dan ringan, sehingga penyebarannya umumnya secara pasif menggunakan aliran udara. Apabila spora tersebut terhirup oleh manusia dalam jumlah tertentu akan mengakibatkan gangguan kesehatan.

Contoh Kapang Yang Berperan Dalam Kesehatan
  1. Gangguan kesehatan yang diakibatkan spora kapang terutama akan menyerang saluran pernapasan. Asma, alergi rinitis, dan sinusitis merupakan gangguan kesehatan yang paling umum dijumpai sebagai hasil kerja sistem imun tubuh yang menyerang spora yang terhirup.
  2. Penyakit lain adalah infeksi kapang pada saluran pernapasan, atau disebut mikosis. Salah satu penyakit mikosis yang umum adalah Aspergillosis, yaitu tumbuhnya kapang dari genus Aspergillus pada saluran pernapasan. Selain genus Aspergillus, beberapa spesies dari genus Curvularia dan Penicillium juga dapat menginfeksi saluran pernapasan dan menunjukkan gejala mirip seperti Aspergillosis.